Search any question & find its solution
Question:
Answered & Verified by Expert
Let \(\mathrm{f}(\mathrm{x})=\) \(\left\{\begin{array}{l}a x^2+1, x > 1 \\ x+a, x \leq 1\end{array}\right.\). Then \(f(x)\) is derivable at \(x=1\), if
Options:
Solution:
2749 Upvotes
Verified Answer
The correct answer is:
\(a=1 / 2\)
\(\begin{aligned}
& \operatorname{Lf}^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{(1-h+a)-(1+a)}{-h}=\lim _{h \rightarrow 0} \frac{-h}{-h}=1 \\
& \operatorname{Rf}^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[a(1+h)^2+1\right]-(1+a)}{h} \\
& =\lim _{h \rightarrow 0}(a h+2 a)=2 a
\end{aligned}\)
Since f' (1) exists, \(\therefore L f^{\prime}(1)=R f^{\prime}(1) \Rightarrow a=1 / 2\)
& \operatorname{Lf}^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{(1-h+a)-(1+a)}{-h}=\lim _{h \rightarrow 0} \frac{-h}{-h}=1 \\
& \operatorname{Rf}^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[a(1+h)^2+1\right]-(1+a)}{h} \\
& =\lim _{h \rightarrow 0}(a h+2 a)=2 a
\end{aligned}\)
Since f' (1) exists, \(\therefore L f^{\prime}(1)=R f^{\prime}(1) \Rightarrow a=1 / 2\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.