Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let S be the set of all α,β,π<α,β<2π, for which the complex number 1-isinα1+2isinα is purely imaginary and 1+icosβ1-2icosβ is purely real. Let Zαβ=sin2α+icos2β,α,βS.
Then α,βSiZαβ+1iZ¯αβ is equal to
MathematicsComplex NumberJEE MainJEE Main 2022 (27 Jul Shift 2)
Options:
  • A 3
  • B 3i
  • C 1
  • D 2-i
Solution:
1985 Upvotes Verified Answer
The correct answer is: 1

Given π<α,β<2π

1-isinα1+i2sinα is purely imaginary

1-isinα1-i2sinα1+4sin2α is purely imaginary

1-2sin2α1+4sin2α=0

sin2α=12

α=5π4,7π4

Also 1+icosβ1+i-2cosβ is purely real

1+icosβ1+2icosβ1+4cos2β is purely real

3cosβ=0

β=3π2

Now Zαβ=sin2α+icos2β

Zαβ=sin5π2+icos3π=1-i

or Zαβ=sin7π2+icos3π=-1-i

α,βSiZαβ+1iZ¯αβ=i1-i+1i1+i+i-1-i+1i-1+i

=i+1-i1-i2+-i+1+i1+i2

=2-1=1

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.