Search any question & find its solution
Question:
Answered & Verified by Expert
Let $S_{n}=\cot ^{-1} 2+\cot ^{-1} 8+\cot ^{-1} 18+\cot ^{-1} 32+\ldots \ldots .$ to $n^{\text {th }}$ term. Then $\lim _{n \rightarrow \infty} S_{n}$ is
Options:
Solution:
2903 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi}{4}$
$\begin{aligned} & t_{n}=\cot ^{-1} 2 n^{2} \\=& \tan ^{-1} \frac{1}{2 n^{2}}=\tan ^{-1} \frac{(2 n+1)-(2 n-1)}{1+(2 n+1)(2 n-1)} \\=& \tan ^{-1}(2 n+1)-\tan ^{-1}(2 n-1) \\ \therefore & S_{n}=\tan ^{-1}(2 n+1)-\tan ^{-1} 1 \\ \therefore & \operatorname{Lim}_{n \rightarrow \infty} S_{n}=\pi / 2-\pi / 4=\pi / 4 \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.