Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let the position vectors of points 'A' and 'B' be i^+j^+k^ and 2i^+j^+3k^, respectively. A point 'P' divides the line segment AB internally in the ratio λ:1λ>0. If O is the origin and OB·OP-3OA×OP2=6 then λ is equal to
MathematicsVector AlgebraJEE MainJEE Main 2020 (02 Sep Shift 2)
Solution:
1088 Upvotes Verified Answer
The correct answer is: 0.8

Position vector of P is OP=a+λbλ+1   OB·OP-3|OA×OP|2=6

  b·a+λbλ+1-3a×a+λbλ+12=6

 a·b+λ|b|2λ+1-3λ2(λ+1)2|a×b|2=6

  6+λ.14λ+1-3λ2(λ+1)2·6=6

  18λ2(λ+1)2+6=6+8λλ+1

  18λλ+12-8λλ+1=0 λλ+10

  10λ=8  λ=0.8

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.