Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{n \rightarrow \infty} \frac{\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n-1}}{n \sqrt{n}}$ is equal to
MathematicsDefinite IntegrationWBJEEWBJEE 2015
Options:
  • A $\frac{1}{2}$
  • B $\frac{1}{3}$
  • C $\frac{2}{3}$
  • D 0
Solution:
1033 Upvotes Verified Answer
The correct answer is: $\frac{2}{3}$
$\lim _{n \rightarrow \infty} \frac{\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n-1}}{n \sqrt{n}}$
$=\lim _{n \rightarrow \infty}\left(\frac{\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n-1}+\sqrt{n}}{n \sqrt{n}}-\frac{n}{n \times n}\right)$
$=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n}\left(\frac{r}{n}\right)^{1 / 2}-\lim _{n \rightarrow \infty} \frac{1}{n} \times \frac{n}{n}=\int_{0}^{1} \sqrt{x} d x+0=\frac{2}{3}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.