Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow \infty}\left(1-\frac{4}{x-1}\right)^{3 x-1}$ is equal to
MathematicsLimitsCOMEDKCOMEDK 2013
Options:
  • A $e^{12}$
  • B $e^{-12}$
  • C $e^{4}$
  • D $e^{3}$
Solution:
1696 Upvotes Verified Answer
The correct answer is: $e^{-12}$
$\begin{aligned} \lim _{x \rightarrow \infty}(1-&\left.\frac{4}{x-1}\right)^{3 x-1} \\ &=e^{\lim _{x \rightarrow \infty}}\left(\frac{-4}{x-1}\right)\left(1^{\infty} \text { form] }\right.\\ &=e^{\lim _{x \rightarrow \infty}-\frac{12 x+4}{x-1}}=e^{-12} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.