Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow 2}\left[\frac{1}{x-2}-\frac{2}{x^3-3 x^2+2 x}\right]$ is equal to
MathematicsLimitsMHT CETMHT CET 2023 (11 May Shift 1)
Options:
  • A $\frac{2}{3}$
  • B $\frac{-2}{3}$
  • C $\frac{3}{2}$
  • D $\frac{-3}{2}$
Solution:
2790 Upvotes Verified Answer
The correct answer is: $\frac{3}{2}$
$\begin{aligned} & \lim _{x \rightarrow 2}\left[\frac{1}{x-2}-\frac{2}{x\left(x^2-3 x+2\right)}\right] \\ & =\lim _{x \rightarrow 2}\left[\frac{1}{(x-2)}-\frac{2}{x(x-2)(x-1)}\right] \\ & =\lim _{x \rightarrow 2}\left[\frac{x^2-x-2}{x(x-1)(x-2)}\right] \\ & =\lim _{x \rightarrow 2} \frac{(x-2)(x+1)}{x(x-1)(x-2)} \\ & =\lim _{x \rightarrow 2} \frac{x+1}{x(x-1)} \\ & =\frac{3}{2}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.