Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow-2^{+}}\left([x]^2-[x]-2\right)+\lim _{x \rightarrow-3^{-}}\left([x]^2-4[x]+3\right)=$
MathematicsLimitsTS EAMCETTS EAMCET 2023 (13 May Shift 1)
Options:
  • A $39$
  • B $33$
  • C $28$
  • D $44$
Solution:
1772 Upvotes Verified Answer
The correct answer is: $39$
$\begin{aligned} & \text \quad \lim _{x \rightarrow-2^{+}}\left([-x]^2-[x]-2\right)+\lim _{x \rightarrow-3^{-}}\left([x]^2-4[x]+3\right) \\ & \because \quad \lim _{x \rightarrow-2^{+}}[x]=\lim _{h \rightarrow 0}[-2+h]=-2 \\ & \quad \lim _{x \rightarrow-3^{-}}[x]=\lim _{h \rightarrow 0}[-3-h]=-4 \\ & \Rightarrow(-2)^2-(-2)-2+(-4)^2-4(-4)+3 \\ & =4+2-2+16+16+3=39 .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.