Search any question & find its solution
Question:
Answered & Verified by Expert
$$
\lim _{x \rightarrow \pi / 6} \frac{3 \sin x-\sqrt{3} \cos x}{6 x-\pi}=
$$
Options:
\lim _{x \rightarrow \pi / 6} \frac{3 \sin x-\sqrt{3} \cos x}{6 x-\pi}=
$$
Solution:
1909 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{\sqrt{3}}$
$\begin{aligned} & \text { } \lim _{x \rightarrow \frac{\pi}{6}} \frac{3 \sin x-\sqrt{3} \cos x}{6 x-\pi} \\ & \lim _{x \rightarrow \frac{\pi}{6}} \frac{3 \cos x+\sqrt{3} \sin x}{6}=\frac{3 \times \frac{\sqrt{3}}{2}+\sqrt{3} \times \frac{1}{2}}{6} \\ & =\frac{4 \sqrt{3}}{2 \times 6}=\frac{1}{\sqrt{3}}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.