Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$$
\lim _{x \rightarrow \pi / 6} \frac{3 \sin x-\sqrt{3} \cos x}{6 x-\pi}=
$$
MathematicsLimitsAP EAMCETAP EAMCET 2022 (06 Jul Shift 1)
Options:
  • A $\frac{-1}{\sqrt{3}}$
  • B $\frac{1}{\sqrt{3}}$
  • C $\frac{1}{\sqrt{2}}$
  • D $\frac{-1}{\sqrt{2}}$
Solution:
1909 Upvotes Verified Answer
The correct answer is: $\frac{1}{\sqrt{3}}$
$\begin{aligned} & \text { } \lim _{x \rightarrow \frac{\pi}{6}} \frac{3 \sin x-\sqrt{3} \cos x}{6 x-\pi} \\ & \lim _{x \rightarrow \frac{\pi}{6}} \frac{3 \cos x+\sqrt{3} \sin x}{6}=\frac{3 \times \frac{\sqrt{3}}{2}+\sqrt{3} \times \frac{1}{2}}{6} \\ & =\frac{4 \sqrt{3}}{2 \times 6}=\frac{1}{\sqrt{3}}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.