Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Middle term in the expansion of $\left(x^{2}+\frac{1}{x^{2}}+2\right)^{n}$ is
MathematicsBinomial TheoremCOMEDKCOMEDK 2021
Options:
  • A $\frac{n !}{(n !)^{2}}$
  • B $\frac{(2 n) !}{(n !)^{2}}$
  • C $\frac{(2 n-1) !}{n !}$
  • D $\frac{(2 n) !}{n !}$
Solution:
1812 Upvotes Verified Answer
The correct answer is: $\frac{(2 n) !}{(n !)^{2}}$
The given expression is
$$
\left(x^{2}+\frac{1}{x^{2}}+2\right)^{n}=\left[\left(x+\frac{1}{x}\right)^{2}\right]^{n}=\left(x+\frac{1}{x}\right)^{2 n}
$$
The binomial contains $(2 n+1)$ terms in its expansion.
$\therefore$ The middle terms is $T_{n+1}$.
$$
T_{n+1}={ }^{2 n} C_{n}(x)^{2 n-n}\left(\frac{1}{x}\right)^{n}={ }^{2 n} C_{n}=\frac{(2 n) !}{(2 n-n) ! n !}=\frac{(2 n) !}{(n !)^{2}}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.