Search any question & find its solution
Question:
Answered & Verified by Expert
Missing term in the following table is
$\begin{array}{lllllll}x & : & 0 & 1 & 2 & 3 & 4 \\ y=f(x) & : & 1 & 3 & 9 & ? & 81\end{array}$
Options:
$\begin{array}{lllllll}x & : & 0 & 1 & 2 & 3 & 4 \\ y=f(x) & : & 1 & 3 & 9 & ? & 81\end{array}$
Solution:
2591 Upvotes
Verified Answer
The correct answer is:
31
Here, 4 values are given, therefore
$$
\begin{aligned}
\Delta^{4} f(x)=0 \forall x & \\
\Rightarrow &(E-1)^{4} f(x)=0 \\
\Rightarrow &\left(E^{4}-4 E^{3}+6 E^{2}-4 E+1\right) f(x)=0 \\
\Rightarrow & E^{4} f(x)-4 E^{3} f(x)+6 E^{2} f(x) \\
-4 E f(x)+f(x)=0 \\
\Rightarrow & f(x+4)-4 f(x+3)+6 f(x+2) \\
-4 f(x+1)+f(x)=0
\end{aligned}
$$
On putting $x=0$, we get
$$
f(4)-4 f(3)+6 f(2)-4 f(1)+f(0)=0 \quad \ldots(\mathrm{i})
$$
On substituting the values of $f(0), f(1), f(2), f(4)$ in Eq. (i), we get
$$
\begin{array}{ll}
& 81-4 f(3)+6 \times 9-4 \times 3+1=0 \\
\Rightarrow & 4 f(3)=124
\end{array}
$$
$\Rightarrow \quad f(3)=31$
$$
\begin{aligned}
\Delta^{4} f(x)=0 \forall x & \\
\Rightarrow &(E-1)^{4} f(x)=0 \\
\Rightarrow &\left(E^{4}-4 E^{3}+6 E^{2}-4 E+1\right) f(x)=0 \\
\Rightarrow & E^{4} f(x)-4 E^{3} f(x)+6 E^{2} f(x) \\
-4 E f(x)+f(x)=0 \\
\Rightarrow & f(x+4)-4 f(x+3)+6 f(x+2) \\
-4 f(x+1)+f(x)=0
\end{aligned}
$$
On putting $x=0$, we get
$$
f(4)-4 f(3)+6 f(2)-4 f(1)+f(0)=0 \quad \ldots(\mathrm{i})
$$
On substituting the values of $f(0), f(1), f(2), f(4)$ in Eq. (i), we get
$$
\begin{array}{ll}
& 81-4 f(3)+6 \times 9-4 \times 3+1=0 \\
\Rightarrow & 4 f(3)=124
\end{array}
$$
$\Rightarrow \quad f(3)=31$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.