Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
One end of a rod of length $\mathrm{L}$ is fixed to a point on the circumference of a wheel of radius $\mathrm{R}$. The other end is sliding freely along a straight channel passing through the centre $\mathrm{O}$ of the wheel as shown in the figure below. The wheel is rotating with a constant angular velocity $\omega$ about $\mathrm{O}$. Taking $\mathrm{T}=\frac{2 \pi}{\omega}$ the motion of the rod is
PhysicsOscillationsKVPYKVPY 2017 (19 Nov SB/SX)
Options:
  • A simple harmonic with a period of $\mathrm{T}$
  • B simple harmonic with a period of $\mathrm{T} / 2$
  • C not simple harmonic but periodic with a period of $\mathrm{T}$
  • D not simple harmonic but periodic with a period of $\mathrm{T} / 2$
Solution:
2458 Upvotes Verified Answer
The correct answer is: not simple harmonic but periodic with a period of $\mathrm{T}$


$\begin{array}{l}
\cos \theta=\frac{\mathrm{R}^{2}+\mathrm{x}^{2}-\mathrm{L}^{2}}{2 \mathrm{Rx}} \\
\Rightarrow \mathrm{x}^{2}=2 \mathrm{Rx} \operatorname{cosec} \theta+\mathrm{L}^{2}-\mathrm{R}^{2}
\end{array}$
displacement of S.H. M. is in the form of $\mathrm{x}=\mathrm{A} \sin \omega \mathrm{t}+\mathrm{c}$
Therefore it is not S. H. M.
It is S. H. M. only which.
It $\mathrm{L}=\mathrm{R}$.
$\begin{array}{l}
\Rightarrow \mathrm{x}^{2}=2 \mathrm{Rx} \cos \theta \\
\Rightarrow \mathrm{x}=2 \mathrm{R} \cos \theta \\
\mathrm{x}=2 \mathrm{R} \cos \omega \mathrm{t}[\text { S.H. M.] }
\end{array}$
But period of this motion is $\mathrm{T}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.