Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Pressure of \(1 \mathrm{~g}\) of an ideal gas \(\mathrm{A}\) at \(27^{\circ} \mathrm{C}\) is found to be 2 bar. When \(2 \mathrm{~g}\) of another ideal gas \(B\) is introduced in the same flask at same temperature, the pressure becomes 3 bar. Find the relationship between their molecular masses.
ChemistryStates of Matter
Solution:
2539 Upvotes Verified Answer
Suppose molecular masses of \(\mathrm{A}\) and \(\mathrm{B}\) are \(\mathrm{M}_{\mathrm{A}}\) and \(\mathrm{M}_B\) respectively. Then their number of moles will be
\(\mathrm{n}_{\mathrm{A}}=\frac{1}{\mathrm{M}_{\mathrm{A}}}, \mathrm{n}_{\mathrm{B}}=\frac{2}{\mathrm{M}_{\mathrm{B}}} \quad\left(\because \mathrm{n}=\frac{\text { given mass }}{\text { molar mass }}\right)\)
\(P_A=2\) bar, \(P_A+P_B=3\) bar, i.e., \(P_B=1\) bar
Applying the relation \(P V=n R T\)
\(\begin{aligned}
&\mathrm{P}_{\mathrm{A}} \mathrm{V}=\mathrm{n}_{\mathrm{A}} \mathrm{RT}, \quad \mathrm{P}_{\mathrm{B}} \mathrm{V}=\mathrm{n}_{\mathrm{B}} \mathrm{RT} \\
&\therefore \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{B}}}=\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=\frac{1 / \mathrm{M}_{\mathrm{A}}}{2 / \mathrm{M}_{\mathrm{B}}} \\
&\text { or } \frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{A}}}=2 \times \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=2 \times \frac{2}{1}=4 \text { or } \mathrm{M}_{\mathrm{B}}=4 \mathrm{M}_{\mathrm{A}}
\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.