Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Prove that,
$\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1$
MathematicsTrigonometric Functions
Solution:
1927 Upvotes Verified Answer
$\mathrm{LHS}=\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)$
$\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]$
Now, $\cos \left(\frac{3 \pi}{2}+x\right)=\sin x, \cos (2 \pi+x)=\cos x$ and $\cot \left(\frac{3 \pi}{2}-x\right)=\tan x, \cot (2 \pi+x)=\cot x$
L.H.S. $=\sin x \cdot \cos x[\tan x+\cot x]$
$=\sin x \cdot \cos x\left[\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right]$
$=\sin x \cdot \cos x\left[\frac{\sin ^2 x+\cos ^2 x}{\cos x \sin x}\right]$
$=(\sin x \cdot \cos x) \frac{1}{\cos x \sin x}=1$
$\left[\because \sin ^2 x+\cos ^2 x=1\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.