Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\frac{\sin 5 \theta}{\sin \theta}$ is equal to
MathematicsTrigonometric Ratios & IdentitiesAP EAMCETAP EAMCET 2001
Options:
  • A $16 \cos ^4 \theta-12 \cos ^2 \theta+1$
  • B $16 \cos ^4 \theta+12 \cos ^2 \theta+1$
  • C $16 \cos ^4 \theta-12 \cos ^2 \theta-1$
  • D $16 \cos ^4 \theta+12 \cos ^2 \theta-1$
Solution:
1324 Upvotes Verified Answer
The correct answer is: $16 \cos ^4 \theta-12 \cos ^2 \theta+1$
$\begin{aligned} & \frac{\sin 5 \theta}{\sin \theta}=\frac{\sin (3 \theta+2 \theta)}{\sin \theta} \\ & =\frac{\sin 3 \theta \cos 2 \theta+\cos 3 \theta \sin 2 \theta}{\sin \theta} \\ & =\frac{\left(3 \sin \theta-4 \sin ^3 \theta\right)(\cos 2 \theta)+2 \cos 3 \theta \cdot \sin \theta \cos \theta}{\sin \theta} \\ & =\left(3-4 \sin ^2 \theta\right)\left(2 \cos ^2 \theta-1\right) \\ & \quad+2 \cos \theta\left(4 \cos ^3 \theta-3 \cos \theta\right) \\ & =\left[3-4\left(1-\cos ^2 \theta\right)\right]\left(2 \cos ^2 \theta-1\right)+8 \cos ^4 \theta-6 \cos ^2 \theta \\ & =\left[4 \cos ^2 \theta-1\right]\left(2 \cos ^2 \theta-1\right)+8 \cos ^4 \theta-6 \cos ^2 \theta \\ & =8 \cos ^4 \theta-6 \cos ^2 \theta+1+8 \cos ^4 \theta-6 \cos ^2 \theta+1 \\ & =16 \cos ^4 \theta-12 \cos ^2 \theta+1\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.