Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\sec h^{-1}\left(\frac{1}{2}\right)-\operatorname{cosec} h^{-1}\left(\frac{3}{4}\right)$ equals to
MathematicsTrigonometric Ratios & IdentitiesTS EAMCETTS EAMCET 2014
Options:
  • A $\log _e(3(2+\sqrt{3}))$
  • B $\log _e\left(\frac{1+\sqrt{3}}{3}\right)$
  • C $\log _e\left(\frac{2+\sqrt{3}}{3}\right)$
  • D $\log _e\left(\frac{2-\sqrt{3}}{3}\right)$
Solution:
1455 Upvotes Verified Answer
The correct answer is: $\log _e\left(\frac{2+\sqrt{3}}{3}\right)$
$\begin{aligned} & \because \sec h^{-1} x=\log _e\left(\frac{1+\sqrt{1-x^2}}{x}\right) \\ & \text { and cosec } h^{-1} x=\log _e\left(\frac{1+\sqrt{1+x^2}}{x}\right) \\ & \therefore \sec h^{-1}\left(\frac{1}{2}\right)-\operatorname{cosec} h\left(\frac{3}{4}\right) \\ & =\log _e\left(\frac{1+\sqrt{1-\left(\frac{1}{2}\right)^2}}{\frac{1}{2}}\right)-\log _e\left(\frac{1+\sqrt{1+\frac{9}{16}}}{\frac{3}{4}}\right) \\ & =\log _e\left(\frac{1+\sqrt{\frac{3}{2}}}{\frac{1}{2}}\right)-\log _e\left(\frac{1+\frac{5}{4}}{\frac{3}{4}}\right) \\ & =\log _e(2+\sqrt{3})-\log _e\left(\frac{9}{3}\right) \\ & =\log _e(2+\sqrt{3})-\log _e(3) \\ & =\log _e \frac{(2+\sqrt{3})}{3}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.