Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The function $\mathrm{f}(\mathrm{x})$ is defined by $\mathrm{f}(\mathrm{x})=(\mathrm{x}+2) \mathrm{e}^{-\mathrm{x}}$ is
MathematicsApplication of DerivativesMHT CETMHT CET 2022 (05 Aug Shift 2)
Options:
  • A monotonically decreasing in $(-1, \infty)$ and monotonically increasing in $(-\infty,-1)$
  • B decreasing for all $\mathrm{x}$
  • C increasing for all $\mathrm{x}$
  • D decreasing in $(-\infty,-1)$ and increasing in $(-1, \infty)$
Solution:
1063 Upvotes Verified Answer
The correct answer is: monotonically decreasing in $(-1, \infty)$ and monotonically increasing in $(-\infty,-1)$
$\begin{aligned} & \mathrm{f}(\mathrm{x})=(\mathrm{x}+2) \mathrm{e}^{-\mathrm{x}} \Rightarrow \mathrm{f} \mathrm{P}^{\prime}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}}-(\mathrm{x}+2) \mathrm{e}^{-\mathrm{x}}=\mathrm{e}^{-\mathrm{x}}(1-\mathrm{x}-2) \\ & \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=-\mathrm{e}^{-\mathrm{x}}(1+\mathrm{x}) \text { sign scheme }\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.