Search any question & find its solution
Question:
Answered & Verified by Expert
The function $\mathrm{f}(\mathrm{x})$ is defined by $\mathrm{f}(\mathrm{x})=(\mathrm{x}+2) \mathrm{e}^{-\mathrm{x}}$ is
Options:
Solution:
1063 Upvotes
Verified Answer
The correct answer is:
monotonically decreasing in $(-1, \infty)$ and monotonically increasing in $(-\infty,-1)$
$\begin{aligned} & \mathrm{f}(\mathrm{x})=(\mathrm{x}+2) \mathrm{e}^{-\mathrm{x}} \Rightarrow \mathrm{f} \mathrm{P}^{\prime}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}}-(\mathrm{x}+2) \mathrm{e}^{-\mathrm{x}}=\mathrm{e}^{-\mathrm{x}}(1-\mathrm{x}-2) \\ & \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=-\mathrm{e}^{-\mathrm{x}}(1+\mathrm{x}) \text { sign scheme }\end{aligned}$


Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.