Search any question & find its solution
Question:
Answered & Verified by Expert
The function $f(x)=\frac{\log (\pi+x)}{\log (e+x)}$ is
Options:
Solution:
1041 Upvotes
Verified Answer
The correct answer is:
decreasing on $(0, \infty)$
$\begin{aligned} & \mathrm{f}(\mathrm{x})=\frac{\log (\pi+\mathrm{x})}{\log (\mathrm{e}+\mathrm{x})} \\ & \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\frac{1}{\pi+\mathrm{x}} \log (\mathrm{e}+\mathrm{x})-\log (\pi+\mathrm{x}) \times \frac{1}{\mathrm{e}+\mathrm{x}}}{\{\log (\mathrm{e}+\mathrm{x})\}^2} \\ & \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{(\mathrm{e}+\mathrm{x}) \log (\mathrm{e}+\mathrm{x})-(\pi+\mathrm{x}) \log (\pi+\mathrm{x})}{(\pi+\mathrm{x})(\mathrm{e}+\mathrm{x})\{\log (\mathrm{e}+\mathrm{x})\}^2}\end{aligned}$
Let $g(x)=(e+x) \log (e+x)-(\pi+x) \log (\pi+x)$
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{x})=\log (\mathrm{e}+\mathrm{x})-\log (\pi+\mathrm{x})<0$
So, $\mathrm{g}(\mathrm{x})$ is decreasing
$$
\begin{aligned}
& \Rightarrow \mathrm{g}(\mathrm{x})<\mathrm{g}(0) \forall \mathrm{x} \in(0, \infty) \\
& \Rightarrow(\mathrm{e}+\mathrm{x}) \log (\mathrm{e}+\mathrm{x})-(\pi+\mathrm{x}) \log (\pi+\mathrm{x})<\mathrm{e} \log \mathrm{e}-\pi \log \pi<0 \\
& \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0 \forall \mathrm{x} \in(0, \infty) \\
& \Rightarrow \mathrm{f}(\mathrm{x}) \text { is decreasing on }(0, \infty)
\end{aligned}
$$
Let $g(x)=(e+x) \log (e+x)-(\pi+x) \log (\pi+x)$
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{x})=\log (\mathrm{e}+\mathrm{x})-\log (\pi+\mathrm{x})<0$
So, $\mathrm{g}(\mathrm{x})$ is decreasing
$$
\begin{aligned}
& \Rightarrow \mathrm{g}(\mathrm{x})<\mathrm{g}(0) \forall \mathrm{x} \in(0, \infty) \\
& \Rightarrow(\mathrm{e}+\mathrm{x}) \log (\mathrm{e}+\mathrm{x})-(\pi+\mathrm{x}) \log (\pi+\mathrm{x})<\mathrm{e} \log \mathrm{e}-\pi \log \pi<0 \\
& \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0 \forall \mathrm{x} \in(0, \infty) \\
& \Rightarrow \mathrm{f}(\mathrm{x}) \text { is decreasing on }(0, \infty)
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.