Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The general solution of the differential equation $x^2 y d x-\left(x^3+y^3\right) d y=0$ is
MathematicsDifferential EquationsTS EAMCETTS EAMCET 2018 (05 May Shift 1)
Options:
  • A $y^3=3 x^3 \log (c x)$
  • B $c\left(x^3-y^3\right)=x^2$
  • C $\log |y|-\frac{x^3}{3 y^3}=c$
  • D $y^2-x^2=c^2\left(y^2-x^2\right)$
Solution:
2557 Upvotes Verified Answer
The correct answer is: $\log |y|-\frac{x^3}{3 y^3}=c$
We have,
$$
x^2 y d x-\left(x^3+y^3\right) d y=0 \Rightarrow \frac{d y}{d x}=\frac{x^2 y}{x^3+y^3}
$$

Given differentiate equation is in the form of homogeneous differentiate equation.
So, let $y=v x$
$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x} \\
& \therefore \quad v+x \frac{d v}{d x}=\frac{v}{1+v^3} \\
& \Rightarrow x \frac{d v}{d x}=\frac{v}{1+v^3}-v \quad \Rightarrow x \frac{d v}{d x}=\frac{v-v-v^4}{1+v^3} \\
& \Rightarrow x \frac{d v}{d x}=\frac{-v^4}{1+v^3} \quad \Rightarrow \frac{1+v^3}{v^4} d v=-\frac{d x}{x}
\end{aligned}
$$


Integrating both side, we get
$$
\begin{aligned}
& \int\left(\frac{1}{v^4}+\frac{1}{v}\right) d v=-\int \frac{1}{x} d x \Rightarrow-\frac{1}{3 v^3}+\log |v|=-\log x+c \\
& \Rightarrow-\frac{x^3}{3 y^3}+\log \left|\frac{y}{x}\right|=-\log |x|+c \Rightarrow-\frac{x^3}{3 y^3}+\log |y|=c
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.