Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The general solution of the differential equation $(y \sin x+y) \frac{d y}{d x}-\cos ^2 x=0$
MathematicsDifferential EquationsTS EAMCETTS EAMCET 2019 (04 May Shift 1)
Options:
  • A $y^2=x-\cos x+c$
  • B $y=1+\sin x+c$
  • C $y^2=2 x-2 \sin x+c$
  • D $y^2=2 x+2 \cos x+c$
Solution:
1043 Upvotes Verified Answer
The correct answer is: $y^2=2 x+2 \cos x+c$
We have, $(y \sin x+y) \frac{d y}{d x}-\cos ^2 x=0$
$$
\begin{aligned}
& \Rightarrow \quad \int y d y=\int \frac{\cos ^2 x}{1+\sin x} d x \\
& \Rightarrow \quad \int y d y=\int(1-\sin x) d x \\
& \Rightarrow \quad \frac{y^2}{2}=x+\cos x+c \\
& \Rightarrow \quad y^2=2 x+2 \cos x+c
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.