Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The general value of the real angle $\theta$, which satisfies the equation. $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots$$(\cos n \theta+t \sin n \theta)=1$ is given by, (assuming $k$ is an integer)
MathematicsComplex NumberWBJEEWBJEE 2019
Options:
  • A $\frac{2 k \pi}{n+2}$
  • B $\frac{4 k \pi}{n(n+1)}$
  • C $\frac{4 x \pi}{n+1}$
  • D $\frac{6 k \pi}{n(n+1)}$
Solution:
2005 Upvotes Verified Answer
The correct answer is: $\frac{4 k \pi}{n(n+1)}$
We have,
$(\cos\theta+i\sin\theta)(cos2\theta+isin2\theta)...(cosn\theta+isinn\theta) = 1$
$\Rightarrow e^{i\theta}.e^{i(2\theta)}.e^{i(3\theta)}. ...e^{i(n\theta)} = 1$
$\Rightarrow e^{i\theta(1+2+3+...+n}=1$
$\Rightarrow e^{\frac{in(n+1)\theta}{2}}=1$
$\Rightarrow cos(\frac{n(n+1)}{2}\theta)+isin(\frac{n(n+1)}{2}\theta = 1 + 0i$
$\Rightarrow cos(\frac{n(n+1)}{2}\theta)=1$
$\Rightarrow \frac{n(n+1)}{2}\theta = 2k\pi$
$\Rightarrow \theta=\frac{4k}{n(n+1)}\pi$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.