Search any question & find its solution
Question:
Answered & Verified by Expert
The given circuit is equivalent to

Options:

Solution:
2608 Upvotes
Verified Answer
The correct answer is:


The symbolic form of the given circuit is
$\begin{aligned}
& (\mathrm{p} \vee \sim \mathrm{q} \vee \sim \mathrm{r}) \wedge(\mathrm{p} \vee(\mathrm{q} \wedge \mathrm{r})) \\
& \equiv \mathrm{p} \vee[(\sim \mathrm{q} \vee \sim \mathrm{r}) \wedge(\mathrm{q} \wedge \mathrm{r})]
\end{aligned}$
...[Distributive law]
$\equiv p \vee[\sim(q \wedge r) \wedge(q \wedge r)]$
...[De Morgan's law]
$\equiv \mathrm{p} \vee \mathrm{F}$
...[Complement law]
$\equiv \mathrm{p}$
[Identity law]
$\begin{aligned}
& (\mathrm{p} \vee \sim \mathrm{q} \vee \sim \mathrm{r}) \wedge(\mathrm{p} \vee(\mathrm{q} \wedge \mathrm{r})) \\
& \equiv \mathrm{p} \vee[(\sim \mathrm{q} \vee \sim \mathrm{r}) \wedge(\mathrm{q} \wedge \mathrm{r})]
\end{aligned}$
...[Distributive law]
$\equiv p \vee[\sim(q \wedge r) \wedge(q \wedge r)]$
...[De Morgan's law]
$\equiv \mathrm{p} \vee \mathrm{F}$
...[Complement law]
$\equiv \mathrm{p}$
[Identity law]
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.