Search any question & find its solution
Question:
Answered & Verified by Expert
The inverse of the matrix $\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$ is
Options:
Solution:
1079 Upvotes
Verified Answer
The correct answer is:
$\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$
Let
$$
A=\left[\begin{array}{ccc}
7 & -3 & -3 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$
Now,
$$
\begin{aligned}
|A| & =7(1-0)+3(-1-0)-3(0+1) \\
& =1
\end{aligned}
$$
Cofactors of matrix $A$ are
$$
\begin{aligned}
C_{11} & =1, C_{12}=1, C_{13}=1 \\
C_{21} & =3, C_{22}=4, C_{23}=3 \\
C_{31} & =3, C_{32}=3, C_{33}=4 \\
\therefore \quad \operatorname{adj}(A) & =\left[\begin{array}{lll}
1 & 1 & 1 \\
3 & 4 & 3 \\
3 & 3 & 4
\end{array}\right]^T \\
& =\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right] \\
\therefore \quad A^{-1} & =\frac{\operatorname{adj}(A)}{|A|}=\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right]
\end{aligned}
$$
$$
A=\left[\begin{array}{ccc}
7 & -3 & -3 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$
Now,
$$
\begin{aligned}
|A| & =7(1-0)+3(-1-0)-3(0+1) \\
& =1
\end{aligned}
$$
Cofactors of matrix $A$ are
$$
\begin{aligned}
C_{11} & =1, C_{12}=1, C_{13}=1 \\
C_{21} & =3, C_{22}=4, C_{23}=3 \\
C_{31} & =3, C_{32}=3, C_{33}=4 \\
\therefore \quad \operatorname{adj}(A) & =\left[\begin{array}{lll}
1 & 1 & 1 \\
3 & 4 & 3 \\
3 & 3 & 4
\end{array}\right]^T \\
& =\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right] \\
\therefore \quad A^{-1} & =\frac{\operatorname{adj}(A)}{|A|}=\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right]
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.