Search any question & find its solution
Question:
Answered & Verified by Expert
The least value of the natural number $n$ satisfying $C(n, 5)+C(n, 6)>C(n+1,5)$ is
Options:
Solution:
2492 Upvotes
Verified Answer
The correct answer is:
$11$
$\begin{aligned} & \text { We have, }{ }^n C_5+{ }^n C_6>{ }^{n+1} C_5 \\ & { }^{n+1} C_6>{ }^{n+1} C_5 \\ & \Rightarrow \quad \frac{(n+1) !}{6 !(n+1-6) !}>\frac{(n+1) !}{5 !(n+1-5) !} \\ & \Rightarrow \quad 5 !(n-4) !>6 !(n-5) ! \\ & \Rightarrow \quad 5 !(n-4)(n-5) !>6 \cdot 5 !(n-5) ! \\ & \Rightarrow \quad n-4>6 \\ & \Rightarrow \quad n>10 \\ & \Rightarrow \quad n=11 \\ & \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.