Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The left-hand derivative of $f(x)=[x] \sin (\pi x)$ at $x=k$ where k is an integer and $[\mathrm{x}]$ is the greatest integer function, is
MathematicsLimitsNDANDA 2017 (Phase 2)
Options:
  • A $(-1)^{\mathrm{k}}(\mathrm{k}-1) \pi$
  • B $(-1)^{\mathrm{k}-1}(\mathrm{k}-1)^{2} \pi$
  • C $\quad(-1)^{\mathrm{k}} \mathrm{k} \pi$
  • D $(-1)^{\mathrm{k}-1} \mathrm{k} \pi$
Solution:
1118 Upvotes Verified Answer
The correct answer is: $(-1)^{\mathrm{k}}(\mathrm{k}-1) \pi$
$\mathrm{f}(\mathrm{x})=[\mathrm{x}] \sin (\pi \mathrm{x})$ at $\mathrm{x}=\mathrm{k}$.
Left hand derivative, $\lim _{h \rightarrow 0} \frac{\mathrm{f}(\mathrm{k})-\mathrm{f}(\mathrm{k}-\mathrm{h})}{\mathrm{h}}$ (k-integer)
$=\lim _{h \rightarrow 0} \frac{[k] \sin k \pi-[k-h] \sin (k-h) \pi}{h}$
$=\lim _{h \rightarrow 0} \frac{-(k-1) \sin (k-h) \pi}{h}$
$\sin k \pi=0$ and $\sin (k \pi-\theta)=(-1)^{k-1} \sin \theta .$
$=\lim _{h \rightarrow 0} \frac{-(k-1)-(1)^{k-1} \sin \pi}{h \pi} \times \pi$
$=\lim _{h \rightarrow 0} \frac{-(k-1)(-1)^{k-1} \sin \pi}{h \pi} \times \pi$
$=\pi(k-1)(-1)^{k}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.