Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The lines $2 \mathrm{x}=3 \mathrm{y}=-\mathrm{z}$ and $6 \mathrm{x}=-\mathrm{y}=-4 \mathrm{z}$
MathematicsStraight LinesNDANDA 2015 (Phase 2)
Options:
  • A are perpendicular
  • B are parallel
  • C intersect at an angle $45^{\circ}$
  • D intersect at an angle $60^{\circ}$
Solution:
3000 Upvotes Verified Answer
The correct answer is: are perpendicular
$2 \mathrm{x}=3 \mathrm{y}=-\mathrm{z}$
or $\frac{\mathrm{x}}{3}=\frac{\mathrm{y}}{2}=\frac{\mathrm{z}}{-6}$
$6 \mathrm{x}=-\mathrm{y}=-4 \mathrm{z}$
or $\frac{\mathrm{x}}{2}=\frac{\mathrm{y}}{-12}=\frac{\mathrm{z}}{-3}$
$\cos \theta=\frac{\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{z}_{1} \mathrm{z}_{2}}{\sqrt{\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}+\mathrm{z}_{1}^{2}} \cdot \sqrt{\mathrm{x}_{2}^{2}+\mathrm{y}_{2}^{2}+\mathrm{z}_{3}^{2}}}$
$=\frac{(6-24+18)}{\sqrt{3^{2}+2^{2}+(-6)^{2}} \cdot \sqrt{2^{2}+(-12)^{2}+(-3)^{2}}}$
$\cos \theta=0$
$\theta=90^{\circ}$
So lines are perpendicular

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.