Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The locus of a point $z$ satisfying $|z|^2=\operatorname{Re}(z)$ is a circle with centre
MathematicsComplex NumberAP EAMCETAP EAMCET 2022 (05 Jul Shift 1)
Options:
  • A $\left(0, \frac{1}{2}\right)$
  • B $\left(-\frac{1}{2}, 0\right)$
  • C $\left(\frac{1}{2}, 0\right)$
  • D $\left(0,-\frac{1}{2}\right)$
Solution:
1262 Upvotes Verified Answer
The correct answer is: $\left(\frac{1}{2}, 0\right)$
Let $z=x+i y$
$|z|=\sqrt{x^2+y^2}$
Now, $|z|^2=\operatorname{Re}(z)$
$x^2+y^2=x$
$\Rightarrow \quad x^2+y^2-x=0$
$g=1 / 2, f=0$
So, centre of circle $\left(\frac{1}{2}, 0\right)$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.