Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The masses of $200 \mathrm{~g}$ and $300 \mathrm{~g}$ are attached to the $20 \mathrm{~cm}$ and $70 \mathrm{~cm}$ marks of a light meter rod, respectively. The moment of inertia of the system about an axis passing through $50 \mathrm{~cm}$ mark is
PhysicsRotational MotionCOMEDKCOMEDK 2020
Options:
  • A $0.15 \mathrm{~kg} \mathrm{~m}^{2}$
  • B $0.036 \mathrm{~kg} \mathrm{~m}^{2}$
  • C $0.3 \mathrm{~kg} \mathrm{~m}^{2}$
  • D Zero
Solution:
2311 Upvotes Verified Answer
The correct answer is: $0.036 \mathrm{~kg} \mathrm{~m}^{2}$
Given, $1 m_{1}=200 \mathrm{~g}=0.2 \mathrm{~kg}$
$$
\begin{gathered}
m_{2}=300 \mathrm{~g}=0.3 \mathrm{~kg} \\
l_{1}=50-20=30 \mathrm{~cm} \\
\Rightarrow \quad l_{1}=0.3 \mathrm{~m} \\
l_{2}=70-50=20 \mathrm{~cm}=0.8 \mathrm{~m}
\end{gathered}
$$
$\therefore$ Moment of inertia of the system about an axis passing through $50 \mathrm{~cm}$ mark (i.e. mid-point)



$$
\begin{aligned}
&\longleftrightarrow 50 \mathrm{~cm} \longrightarrow+50 \mathrm{~cm} \longrightarrow \\
&+20 \mathrm{~cm}+\frac{14}{\longleftrightarrow}+1-l_{2} \rightarrow \\
&l=m_{1} l_{1}^{2}+m_{2} l_{2}^{2} \\
&=0.2 \times(0.3)^{2}+0.3 \times(0.2)^{2} \\
&=0.036 \mathrm{~kg} \mathrm{~m}^{2}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.