Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The maximum area of a right angled triangle with hypotenuse $h$ is
MathematicsApplication of DerivativesAP EAMCETAP EAMCET 2022 (06 Jul Shift 1)
Options:
  • A $h^2 / 2 \sqrt{2}$
  • B $h^2 / 2$
  • C $h^2 / \sqrt{2}$
  • D $h^2 / 4$
Solution:
2188 Upvotes Verified Answer
The correct answer is: $h^2 / 4$
Let a right angled triangle $\mathrm{OAB}$, with $\mathrm{h}$ hypoteneous
Let $\angle \mathrm{OAh}=\theta$
now $\mathrm{OA}=\mathrm{h} \cos \theta$ and $\mathrm{OB}=\mathrm{h} \sin \theta$
$$
\begin{aligned}
& \Rightarrow \text { Area }=\frac{1}{2} \times \mathrm{OA} \times \mathrm{OB}=\frac{1}{2} \mathrm{~h}^2\left(\frac{1}{2} \sin \theta \cos \theta\right) \\
& =\frac{1}{4} \mathrm{~h}^2 \sin 2 \theta, \sin 2 \theta, \text { for maximum } \theta=45^{\circ} \\
& \Rightarrow \frac{1}{4} \mathrm{~h}^2
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.