Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The maximum particle velocity in a wave motion is half the wave velocity. Then the amplitude of the wave is equal to
PhysicsWaves and SoundKCETKCET 2007
Options:
  • A $\frac{\lambda}{4 \pi}$
  • B $\frac{2 \lambda}{\pi}$
  • C $\frac{\lambda}{2 \pi}$
  • D $\lambda$
Solution:
2719 Upvotes Verified Answer
The correct answer is: $\frac{\lambda}{4 \pi}$
For a wave,
$$
y=a \sin \frac{2}{\lambda}(v t-x)
$$
Differentiating Eq. (i) w.r.t. $t$, we get
$$
\frac{d y}{d t}=\frac{2 \pi v a}{\lambda} \cos \frac{2 \pi}{\lambda}(v t-x)
$$
Now, maximum velocity is obtained when
$\cos \frac{2 \pi}{\lambda}(v t-x)=1$
$\therefore \quad v_{\max }=\left(\frac{d y}{d t}\right)_{\max }=\frac{2 \pi v a}{\lambda}$
but $\quad v_{\max }=\frac{v}{2}$
$\therefore \quad \frac{v}{2}=\frac{2 \pi v a}{\lambda} \Rightarrow a=\frac{\lambda}{4 \pi}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.