Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The maximum value of ' $a$ ' such that the second derivative of $x^4+a x^3+\frac{3 x^2}{2}+1$ is positive for all real $x$ is
MathematicsApplication of DerivativesAP EAMCETAP EAMCET 2023 (19 May Shift 1)
Options:
  • A $3$
  • B $-3$
  • C $2$
  • D $-2$
Solution:
2953 Upvotes Verified Answer
The correct answer is: $2$
$\begin{aligned} & \text { } \because f(x)=x^4+a x^3+\frac{3 x^2}{2}+1 \\ & \Rightarrow f^{\prime \prime}(x)=12 x^2+6 a x+3 \\ & \because f^{\prime \prime}(x)>0 \Rightarrow 4 x^2+3 a x+1>0 \\ & \Rightarrow\left(2 x+\frac{1}{2} a\right)^2+\left(1-\frac{a^2}{4}\right)>0 \\ & \Rightarrow 1-\frac{a^2}{4}>0 \\ & \Rightarrow \frac{a^2}{4} < 1 \Rightarrow a^2 < 4 \Rightarrow-2 < a < 2 \\ & \therefore \text { Maximum value of a is } 2 .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.