Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The minimum value of $\left(1+\frac{1}{\sin ^n \alpha}\right)\left(1+\frac{1}{\cos ^n \alpha}\right)$ is
MathematicsApplication of DerivativesAP EAMCETAP EAMCET 2022 (08 Jul Shift 1)
Options:
  • A $1$
  • B $2$
  • C $\left(1+2^n\right)^2$
  • D $\left(1+2^{n / 2}\right)^2$
Solution:
1227 Upvotes Verified Answer
The correct answer is: $\left(1+2^{n / 2}\right)^2$
Let $f(x)=\left(1+\frac{1}{\sin ^n x}\right)\left(1+\frac{1}{\cos ^n x}\right)$
$=\left(1+\operatorname{cosec}^n x\right)\left(1+\sec ^n x\right)$
$\begin{aligned} & \mathrm{f}(\mathrm{x})=\left[-\mathrm{n} \operatorname{cosec}^{\mathrm{n}-1} \mathrm{x}-\operatorname{cosec} n \cdot \cot \mathrm{x}\right] \mathrm{dx} \\ & \left(1+\sec ^{\mathrm{n}} \mathrm{x}\right)+\left(1+\operatorname{cosec}^{\mathrm{n}} \mathrm{x}\right) \\ & \operatorname{nsec}^{\mathrm{n}} \mathrm{x} \times \sec \mathrm{x} \tan \mathrm{x}=0\end{aligned}$
$\Rightarrow \quad \mathrm{x}=\frac{\pi}{4}$
Now, $\mathrm{f}\left(\frac{\pi}{4}\right)=\left[1+(2)^{\mathrm{n} / 2}\right]^2$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.