Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The minimum value of $2^{\sin x}+2^{\cos x}$ is
MathematicsSequences and SeriesWBJEEWBJEE 2014
Options:
  • A $2^{1-1 / \sqrt{2}}$
  • B $2^{1+1 / \sqrt{2}}$
  • C $2^{\sqrt{2}}$
  • D 2
Solution:
1166 Upvotes Verified Answer
The correct answer is: $2^{1-1 / \sqrt{2}}$
We know that
$\mathrm{AM} \geq \mathrm{GM}$
$\therefore \quad \frac{2^{\sin x}+2^{\cos x}}{2} \geq \sqrt{2^{\sin x} 2^{\cos x}}$
$\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2 \sqrt{2^{\sin x+\cos x}}$
$\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2 \times 2^{\frac{\sin x+\cos x}{2}}$
$\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2^{1+\frac{\sin x+\cos x}{2}}$
But $\sin x+\cos x=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right) \geq-\sqrt{2}$
$\therefore \quad 2^{\sin x}+2^{\cos x} \geq 2^{1-\frac{\sqrt{2}}{2}}$
$\Rightarrow 2^{\sin x}+2^{\cos x} \geq 2^{1-\frac{1}{\sqrt{2}}}, \forall x \in R$
Hence, minimum value is $2^{1-\frac{1}{\sqrt{2}}}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.