Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The outcome of each of 30 items was observed; 10 items

gave an outcome $\frac{1}{2}-\mathrm{d}$ each, 10 items gave outcome $\frac{1}{2}$

each and the remaining 10 items gave outcome $\frac{1}{2}+\mathrm{d}$ each.

If the variance of this outcome data is $\frac{4}{3}$ then $|\mathrm{d}|$ equals:
MathematicsStatisticsJEE MainJEE Main 2019 (11 Jan Shift 1)
Options:
  • A $\frac{2}{3}$
  • B 2
  • C $\frac{\sqrt{5}}{2}$
  • D $\sqrt{2}$
Solution:
2270 Upvotes Verified Answer
The correct answer is: $\sqrt{2}$
Outcomes are $\left(\frac{1}{2}-d\right),\left(\frac{1}{2}-d\right), 0 \ldots, 10$ times, $\frac{1}{2}, \frac{1}{2}$,

$\ldots, 10$ times, $\frac{1}{2}+d, \frac{1}{2}+d, \ldots, 10$ times

$$

\text { Mean }=\frac{1}{30}\left(\frac{1}{2} \times 30\right)=\frac{1}{2}

$$

Variance of the outcomes is,

$$

\begin{aligned}

\sigma^{2} &=\frac{1}{30} \Sigma x_{i}^{2}-(\bar{x})^{2} \\

&=\frac{1}{30}\left[\left(\frac{1}{2}-d\right)^{2} \times 10+\left(\frac{1}{2}\right)^{2} \times 10+\left(\frac{1}{2}+d\right)^{2} \times 10\right]-\frac{1}{4} \\

\Rightarrow & \frac{4}{3}=\frac{1}{30}\left[30 \times \frac{1}{4}+20 d^{2}\right]-\frac{1}{4} \\

\Rightarrow & \frac{4}{3}=\frac{1}{4}+\frac{2}{3} d^{2}-\frac{1}{4} \\

\Rightarrow & d^{2}=2 \Rightarrow|d|=\sqrt{2}

\end{aligned}

$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.