Search any question & find its solution
Question:
Answered & Verified by Expert
The p.d.f. of a discrete random variable is defined as
$f(x)= \begin{cases}\mathrm{k} x^2, & 0 \leq x \leq 6 \\ 0, & \text { otherwise }\end{cases}$
Then the value of $F(4)$ (c.d.f) is
Options:
$f(x)= \begin{cases}\mathrm{k} x^2, & 0 \leq x \leq 6 \\ 0, & \text { otherwise }\end{cases}$
Then the value of $F(4)$ (c.d.f) is
Solution:
1223 Upvotes
Verified Answer
The correct answer is:
$\frac{30}{91}$
$\begin{aligned} \mathrm{f}(x) & =\mathrm{k} x^2, 0 \leq x \leq 6 \\ \mathrm{k}(0)^2 & +\mathrm{k}(1)^2+\mathrm{k}(2)^2+\mathrm{k}(3)^2+\mathrm{k}(4)^2 \\ \Rightarrow \mathrm{k} & +4 \mathrm{k}(5)^2+\mathrm{k}(6)^2=1 \\ \Rightarrow & 91 \mathrm{k}=1 \\ \Rightarrow \mathrm{k} & =\frac{1}{91} \\ \mathrm{~F}(4) & =\mathrm{P}(\mathrm{X} \leq 4)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1) \\ & =\mathrm{k}(0)^2+\mathrm{k}(\mathrm{k})^2+\mathrm{k}(2)^2+\mathrm{k}(3)^2+\mathrm{k}(4)^2 \\ & =\mathrm{k}+4 \mathrm{k}+9 \mathrm{k}+16 \mathrm{k} \\ & =30 \mathrm{k} \\ & =30\left(\frac{1}{91}\right) \\ & =\frac{30}{91}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.