Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The principal solutions of $\cos 2 x=\frac{-1}{2}$ are
MathematicsTrigonometric EquationsMHT CETMHT CET 2020 (19 Oct Shift 1)
Options:
  • A $x=\frac{-2 \pi}{3}, x=\frac{4 \pi}{3}$
  • B $x=\frac{\pi}{3}, \quad x=\frac{2 \pi}{3}$
  • C $x=\frac{-\pi}{3}, \quad x=\frac{5 \pi}{6}$
  • D $x=\frac{\pi}{3}, \quad x=\frac{7 \pi}{6}$
Solution:
2869 Upvotes Verified Answer
The correct answer is: $x=\frac{\pi}{3}, \quad x=\frac{2 \pi}{3}$
(B)
$\begin{aligned} & \cos 2 x=\frac{-1}{2} \\ \therefore & \frac{-1}{2}=\cos \left(\pi-\frac{\pi}{3}\right)-\cos \left(\pi+\frac{\pi}{3}\right) \Rightarrow \frac{-1}{2}-\cos \frac{2 \pi}{3}-\cos \frac{4 \pi}{3} \\ \therefore & 2 x=\frac{2 \pi}{3} \text { or } 2 x=\frac{4 \pi}{3} \Rightarrow x=\frac{\pi}{3} \text { or } \frac{2 \pi}{3} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.