Search any question & find its solution
Question:
Answered & Verified by Expert
The probability distribution of a discrete random variable $\mathrm{X}$ is

Find the value of $\mathrm{P}(2 < \mathrm{X} < 6)$
Options:

Find the value of $\mathrm{P}(2 < \mathrm{X} < 6)$
Solution:
2145 Upvotes
Verified Answer
The correct answer is:
$\frac{4}{7}$
We have $\mathrm{K}+2 \mathrm{~K}+3 \mathrm{~K}+4 \mathrm{~K}+5 \mathrm{~K}+6 \mathrm{~K}=1 \Rightarrow \mathrm{K}=\frac{1}{21}$
$$
\begin{aligned}
& \therefore \mathrm{P}(2 < \mathrm{x} < 6)=\mathrm{P}(\mathrm{x}=3)+\mathrm{P}(\mathrm{x}=4)+\mathrm{P}(\mathrm{x}=5) \\
& =\frac{3}{21}+\frac{4}{21}+\frac{5}{21}=\frac{12}{21}=\frac{4}{7}
\end{aligned}
$$
$$
\begin{aligned}
& \therefore \mathrm{P}(2 < \mathrm{x} < 6)=\mathrm{P}(\mathrm{x}=3)+\mathrm{P}(\mathrm{x}=4)+\mathrm{P}(\mathrm{x}=5) \\
& =\frac{3}{21}+\frac{4}{21}+\frac{5}{21}=\frac{12}{21}=\frac{4}{7}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.