Search any question & find its solution
Question:
Answered & Verified by Expert
The product of real of the equation $|x|^{6 / 5}-26|x|^{3 / 5}-27=0$
Options:
Solution:
2983 Upvotes
Verified Answer
The correct answer is:
$-3^{10}$
Given equation is
$|x|^{6 / 5}-26|x|^{3 / 5}-27=0$
Put $|x|^{3 / 5}=t$
$\begin{aligned} & \therefore \quad t^2-26 t-27=0 \\ & \Rightarrow \quad t^2-27 t+t-27=0 \\ & \Rightarrow \quad t(t-27)+1(t-27)=0 \\ & \Rightarrow \quad(t+1)(t-27)=0 \\ & \Rightarrow \quad t=27 \text { or }-1 \\ & \Rightarrow \quad|x|^{3 / 5}=27 \\ & \left(\because|x|^{3 / 5} \text { can not be negative) }\right. \\ & \Rightarrow \quad|x|^3=\left(3^3\right)^5 \\ & \Rightarrow \quad|x|=3^5 \\ & \Rightarrow \quad x=3^5 \text { or }-3^5 \\ & \end{aligned}$
$\therefore$ Product of $x=3^5 \times(-3)^5=-3^{10}$
$|x|^{6 / 5}-26|x|^{3 / 5}-27=0$
Put $|x|^{3 / 5}=t$
$\begin{aligned} & \therefore \quad t^2-26 t-27=0 \\ & \Rightarrow \quad t^2-27 t+t-27=0 \\ & \Rightarrow \quad t(t-27)+1(t-27)=0 \\ & \Rightarrow \quad(t+1)(t-27)=0 \\ & \Rightarrow \quad t=27 \text { or }-1 \\ & \Rightarrow \quad|x|^{3 / 5}=27 \\ & \left(\because|x|^{3 / 5} \text { can not be negative) }\right. \\ & \Rightarrow \quad|x|^3=\left(3^3\right)^5 \\ & \Rightarrow \quad|x|=3^5 \\ & \Rightarrow \quad x=3^5 \text { or }-3^5 \\ & \end{aligned}$
$\therefore$ Product of $x=3^5 \times(-3)^5=-3^{10}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.