Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The radius of a circle is increasing at the rate $2 \mathrm{~cm} / \mathrm{sec}$. The rate at which its area is
increasing when the radius of the circle is 5 decimeters is
MathematicsApplication of DerivativesMHT CETMHT CET 2020 (13 Oct Shift 1)
Options:
  • A $100 \pi \mathrm{cm}^{2} / \mathrm{sec}$
  • B $200 \pi \mathrm{cm}^{2} / \mathrm{sec}$
  • C $2000 \pi \mathrm{cm}^{2} / \mathrm{sec}$
  • D $20 \pi \mathrm{cm}^{2} / \mathrm{sec}$
Solution:
2986 Upvotes Verified Answer
The correct answer is: $200 \pi \mathrm{cm}^{2} / \mathrm{sec}$
Here $\frac{\mathrm{dr}}{\mathrm{dt}}=2$ and $\mathrm{r}=5$ decimeter $=50 \mathrm{~cm}$
Now Area of circle $=\mathrm{A}=\pi \mathrm{r}^{2}$.
$\begin{aligned}
\therefore \frac{\mathrm{d} \mathrm{A}}{\mathrm{dt}} &=2 \pi \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \\
&=2 \times \pi \times 50 \times 2=200 \pi \mathrm{cm}^{2} / \mathrm{sec}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.