Search any question & find its solution
Question:
Answered & Verified by Expert
The radius of a circular plate is increasing at the rate of 0.01 $\mathrm{cm} / \mathrm{sec}$, when the radius is $12 \mathrm{~cm}$. Then the rate at which the area increases is
Options:
Solution:
2686 Upvotes
Verified Answer
The correct answer is:
$0.24 \pi$ sq. cm $/ \mathrm{sec}$
We have $\frac{\mathrm{dr}}{\mathrm{dt}}=0.01$
$$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{r}^2 \\
& \therefore \quad \frac{\mathrm{dA}}{\mathrm{dt}}=\pi(2 \mathrm{r}) \frac{\mathrm{dr}}{\mathrm{dt}}=(2 \pi)(12)(0.01)=0.24 \pi \mathrm{sq} \cdot \mathrm{cm} / \mathrm{sec}
\end{aligned}
$$
$$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{r}^2 \\
& \therefore \quad \frac{\mathrm{dA}}{\mathrm{dt}}=\pi(2 \mathrm{r}) \frac{\mathrm{dr}}{\mathrm{dt}}=(2 \pi)(12)(0.01)=0.24 \pi \mathrm{sq} \cdot \mathrm{cm} / \mathrm{sec}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.