Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The radius of a circular plate is increasing at the rate of 0.01 $\mathrm{cm} / \mathrm{sec}$, when the radius is $12 \mathrm{~cm}$. Then the rate at which the area increases is
MathematicsApplication of DerivativesMHT CETMHT CET 2021 (24 Sep Shift 1)
Options:
  • A $60 \pi$ sq. cm $/ \mathrm{sec}$
  • B $0.24 \pi$ sq. cm $/ \mathrm{sec}$
  • C $1.2 \pi$ sq. cm $/ \mathrm{sec}$
  • D $24 \pi$ sq. cm $/ \mathrm{sec}$
Solution:
2686 Upvotes Verified Answer
The correct answer is: $0.24 \pi$ sq. cm $/ \mathrm{sec}$
We have $\frac{\mathrm{dr}}{\mathrm{dt}}=0.01$
$$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{r}^2 \\
& \therefore \quad \frac{\mathrm{dA}}{\mathrm{dt}}=\pi(2 \mathrm{r}) \frac{\mathrm{dr}}{\mathrm{dt}}=(2 \pi)(12)(0.01)=0.24 \pi \mathrm{sq} \cdot \mathrm{cm} / \mathrm{sec}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.