Search any question & find its solution
Question:
Answered & Verified by Expert
The radius of a planet is twice the radius of earth. Both have almost equal average
mass-densities. $v_{p}$ and $v_{e}$ are escape velocities of the planet and the earth, respectively, then
Options:
mass-densities. $v_{p}$ and $v_{e}$ are escape velocities of the planet and the earth, respectively, then
Solution:
1252 Upvotes
Verified Answer
The correct answer is:
$v_{p}=2 v_{e}$
The escape velocity of earth,
$$
v_{e}=\sqrt{\frac{2 G M_{e}}{R_{e}}}=R_{e} \sqrt{\frac{8}{3} \pi G \rho_{e}}
$$
Similarly for a planet,
$$
v_{p}=R{ }_{p} \sqrt{\frac{8}{3} \pi G \rho_{p}}
$$
$$
\therefore \quad \frac{v_{e}}{v_{p}}=\frac{R_{e}}{R_{p}} \sqrt{\frac{\rho_{e}}{\rho_{n}}}
$$
Here,
$$
R_{p}=2 R_{e}, \rho_{e}=\rho_{p} \Rightarrow \frac{v_{e}}{v_{p}}=\frac{1}{2} \text { or } v_{p}=2 v_{e}
$$
$$
v_{e}=\sqrt{\frac{2 G M_{e}}{R_{e}}}=R_{e} \sqrt{\frac{8}{3} \pi G \rho_{e}}
$$
Similarly for a planet,
$$
v_{p}=R{ }_{p} \sqrt{\frac{8}{3} \pi G \rho_{p}}
$$
$$
\therefore \quad \frac{v_{e}}{v_{p}}=\frac{R_{e}}{R_{p}} \sqrt{\frac{\rho_{e}}{\rho_{n}}}
$$
Here,
$$
R_{p}=2 R_{e}, \rho_{e}=\rho_{p} \Rightarrow \frac{v_{e}}{v_{p}}=\frac{1}{2} \text { or } v_{p}=2 v_{e}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.