Search any question & find its solution
Question:
Answered & Verified by Expert
The radius of a sphere increases at the rate of $0.04 \mathrm{~cm} / \mathrm{sec}$. The rate of increase in the volume of that sphere with respect to its surface area, when its radius is $10 \mathrm{~cm}$ is
Options:
Solution:
1725 Upvotes
Verified Answer
The correct answer is:
5
Let $r$ be the radius of the sphere.
Given, rate of change in radius $\frac{d r}{d t}=0.04 \mathrm{~cm} / \mathrm{sec}$
Volume of sphere $(V)=\frac{4}{3} \pi r^3$
Differentiating w.r.t, $t$, we get
$$
\frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^2\right) \cdot \frac{d r}{d t}
$$

Surface area of sphere $(S)=4 \pi r^2$
$$
\frac{d S}{d t}=4 \pi(2 r) \cdot \frac{d r}{d t}
$$
Eq. (i) divided by Eq. (ii), we get
$$
\begin{array}{ll}
\frac{\frac{d V}{d t}}{\frac{d S}{d t}}=\frac{4 \pi r^2 \cdot \frac{d r}{d t}}{8 \pi r \cdot \frac{d r}{d t}} & \\
\frac{d V}{d S}=\frac{r}{2}=\frac{10}{2} & {[\because r=10 \mathrm{~cm}]} \\
\frac{d V}{d S}=5 \mathrm{~cm} &
\end{array}
$$
Hence, option (d) is correct.
Given, rate of change in radius $\frac{d r}{d t}=0.04 \mathrm{~cm} / \mathrm{sec}$
Volume of sphere $(V)=\frac{4}{3} \pi r^3$
Differentiating w.r.t, $t$, we get
$$
\frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^2\right) \cdot \frac{d r}{d t}
$$

Surface area of sphere $(S)=4 \pi r^2$
$$
\frac{d S}{d t}=4 \pi(2 r) \cdot \frac{d r}{d t}
$$

Eq. (i) divided by Eq. (ii), we get
$$
\begin{array}{ll}
\frac{\frac{d V}{d t}}{\frac{d S}{d t}}=\frac{4 \pi r^2 \cdot \frac{d r}{d t}}{8 \pi r \cdot \frac{d r}{d t}} & \\
\frac{d V}{d S}=\frac{r}{2}=\frac{10}{2} & {[\because r=10 \mathrm{~cm}]} \\
\frac{d V}{d S}=5 \mathrm{~cm} &
\end{array}
$$
Hence, option (d) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.