Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The ratio of energy required to raise a satellite of mass 'm' to a height ' $\mathrm{h}$ ' above the earth's surface to that required to put it into the orbit at same height is $[\mathrm{R}=$ radius of the earth $]$
PhysicsGravitationMHT CETMHT CET 2020 (16 Oct Shift 2)
Options:
  • A $\frac{\mathrm{h}}{\mathrm{R}}$
  • B $\frac{4 \mathrm{~h}}{\mathrm{R}}$
  • C $\frac{3 \mathrm{~h}}{\mathrm{R}}$
  • D $\frac{2 \mathrm{~h}}{\mathrm{R}}$
Solution:
2998 Upvotes Verified Answer
The correct answer is: $\frac{2 \mathrm{~h}}{\mathrm{R}}$
(D)
Energy required to raise the satellite to a height $h$ from surface of earth is given by
$\begin{aligned}
U &=-\frac{G M m}{(R+h)}-\left(-\frac{G M m}{R}\right) \\
&=\frac{G M m}{R}-\frac{G M m}{(R+h)}=G M m\left[\frac{1}{R}-\frac{1}{R+h}\right] \\
&=G M m\left[\frac{R+h-R}{R(R+h)}\right]=G M m \frac{h}{R(R+h)}
\end{aligned}$
KE of the satellite is given by
$\begin{aligned}
\mathrm{K} &=\frac{1}{2} \mathrm{mV}_{0}^{2}=\frac{1}{2} \mathrm{~m} \frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})} \\
\therefore \quad \frac{\mathrm{U}}{\mathrm{K}} &=\frac{\mathrm{GMmh}}{\mathrm{R}(\mathrm{R}+\mathrm{h})} \times \frac{(\mathrm{R}+\mathrm{h}) 2}{\mathrm{mGM}}=\frac{2 \mathrm{~h}}{\mathrm{R}}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.