Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The set of points of discontinuity of the function
$f(x)=\lim _{n \rightarrow \infty} \frac{(2 \sin x)^{2 n}}{3^{n}-(2 \cos x)^{2 n}}$ is given by
MathematicsContinuity and DifferentiabilityVITEEEVITEEE 2017
Options:
  • A $\mathrm{R}$
  • B $\left\{\mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{I}\right\}$
  • C $\left\{\mathrm{n} \pi \pm \frac{\pi}{6}, \mathrm{n} \in \mathrm{I}\right\}$
  • D None of these
Solution:
1316 Upvotes Verified Answer
The correct answer is: $\left\{\mathrm{n} \pi \pm \frac{\pi}{6}, \mathrm{n} \in \mathrm{I}\right\}$
We have, $f(x)=\lim _{n \rightarrow \infty} \frac{(2 \sin x)^{2 n}}{3^{n}-(2 \cos x)^{2 n}}$
$$
=\lim _{n \rightarrow \infty} \frac{(2 \sin x)^{2 n}}{(\sqrt{3})^{2 n}-(2 \cos x)^{2 n}}
$$
$\mathrm{f}(\mathrm{x})$ is discontinuous when $(\sqrt{3})^{2 n}-(2 \cos x)^{2 n}=0$
i.e. $\cos x=\pm \frac{\sqrt{3}}{2} \Rightarrow x=n \pi \pm \frac{\pi}{6}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.