Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The set of values of $\theta$ satisfying the inequation $2 \sin ^2 \theta-5 \sin \theta+2>0$, where $0 < \theta < 2 \pi$, is
MathematicsTrigonometric EquationsJEE AdvancedJEE Advanced 2006
Options:
  • A
    $\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, 2 \pi\right)$
  • B
    $\left[0, \frac{\pi}{6}\right] \cup\left[\frac{5 \pi}{6}, 2 \pi\right]$
  • C
    $\left[0, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, 2 \pi\right]$
  • D
    None of these
Solution:
2279 Upvotes Verified Answer
The correct answer is:
$\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, 2 \pi\right)$
$$
\begin{aligned}
& \text { As, } 2 \sin ^2 \theta-5 \sin \theta+2>0 \\
& \Rightarrow(2 \sin \theta-1)(\sin \theta-2)>0 \\
& \quad[\text { where, }(\sin \theta-2) < 0 \text { for all } \theta \in R] \\
& \therefore \quad(2 \sin \theta-1) < 0
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & \sin \theta < \frac{1}{2}, \text { shown as } \\
\therefore & \theta \in\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, 2 \pi\right)
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.