Search any question & find its solution
Question:
Answered & Verified by Expert
The simplified expression of $\sin \left(\tan ^{-1} x\right)$, for any real number $x$ is given by
Options:
Solution:
1015 Upvotes
Verified Answer
The correct answer is:
$\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}$
Let $\tan ^{-1} x=\theta$
$\Rightarrow x=\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}$
$\Rightarrow x=\sqrt{1-\sin ^{2} \theta}=\sin \theta$
$\Rightarrow x^{2}\left(1-\sin ^{2} \theta\right)=\sin ^{2} \theta$
$\Rightarrow x^{2}=\sin ^{2} \theta\left(1+x^{2}\right)$
$\Rightarrow \sin ^{2} \theta=\frac{x^{2}}{1+x^{2}} \Rightarrow \sin \theta=\frac{x}{\sqrt{1+x^{2}}}$
$\Rightarrow \theta=\sin ^{-1} \frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}$
$\begin{aligned} \Rightarrow \tan ^{-1} \mathrm{x} &=\sin ^{-1} \frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}} \\ \text { Now, } \sin \left(\tan ^{-1} \mathrm{x}\right) &=\sin \left(\sin ^{-1} \frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}\right) \\ &=\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}} \end{aligned}$
$\Rightarrow x=\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}$
$\Rightarrow x=\sqrt{1-\sin ^{2} \theta}=\sin \theta$
$\Rightarrow x^{2}\left(1-\sin ^{2} \theta\right)=\sin ^{2} \theta$
$\Rightarrow x^{2}=\sin ^{2} \theta\left(1+x^{2}\right)$
$\Rightarrow \sin ^{2} \theta=\frac{x^{2}}{1+x^{2}} \Rightarrow \sin \theta=\frac{x}{\sqrt{1+x^{2}}}$
$\Rightarrow \theta=\sin ^{-1} \frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}$
$\begin{aligned} \Rightarrow \tan ^{-1} \mathrm{x} &=\sin ^{-1} \frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}} \\ \text { Now, } \sin \left(\tan ^{-1} \mathrm{x}\right) &=\sin \left(\sin ^{-1} \frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}\right) \\ &=\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}} \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.