Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The slant height of a right circular cone is $3 \mathrm{~cm}$. The height of the cone for maximum volume is
MathematicsApplication of DerivativesMHT CETMHT CET 2021 (22 Sep Shift 2)
Options:
  • A $5 \mathrm{~cm}$
  • B $\sqrt{5} \mathrm{~cm}$
  • C $3 \mathrm{~cm}$
  • D $\sqrt{3} \mathrm{~cm}$
Solution:
1225 Upvotes Verified Answer
The correct answer is: $\sqrt{3} \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi \mathrm{r}^2 \mathrm{~h}$
We have slant height $\ell=3 \mathrm{~cm}$ and we know that $\ell^2=\mathrm{r}^2+\mathrm{h}^2$
$$
\begin{aligned}
& \therefore 9=\mathrm{r}^2+\mathrm{h}^2 \Rightarrow \mathrm{r}^2=9-\mathrm{h}^2 \\
& \therefore \mathrm{v}=\frac{1}{3} \pi\left(9-\mathrm{h}^2\right) \mathrm{h}=(3 \pi) \mathrm{h}-\left(\frac{\pi}{3}\right) \mathrm{h}^3 \\
& \frac{\mathrm{dv}}{\mathrm{dh}}=3 \pi-\left(\frac{\pi}{3}\right)\left(3 \mathrm{~h}^2\right)=3 \pi-\pi \mathrm{h}^2
\end{aligned}
$$
When $\frac{\mathrm{dv}}{\mathrm{dh}}=0$, we get $3 \pi=\pi \mathrm{h}^2 \Rightarrow \mathrm{h}=\sqrt{3}$
$$
\frac{\mathrm{d}^2 \mathrm{v}}{\mathrm{dh}^2}=0-2 \pi \mathrm{h} \quad \Rightarrow\left(\frac{\mathrm{d}^2 \mathrm{v}}{\mathrm{dh}^2}\right)_{\mathrm{b}-\sqrt{3}}=-2 \sqrt{3} \pi < 0
$$
$\therefore$ Volume of cone is maximum when $\mathrm{h}=\sqrt{3}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.