Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The speed of a transverse wave travelling in a wire of length $50 \mathrm{~cm}$, cross-sectional area $1 \mathrm{~mm}^2$ and mass $5 \mathrm{~g}$ is $80 \mathrm{~ms}^{-1}$. The Young's modulus of the material of the wire is $4 \times 10^{11} \mathrm{Nm}^{-2}$. The extension in the length of the wire is
PhysicsMechanical Properties of SolidsAP EAMCETAP EAMCET 2019 (20 Apr Shift 2)
Options:
  • A $8 \times 10^{-5} \mathrm{~m}$
  • B $8 \times 10^{-4} \mathrm{~m}$
  • C $16 \times 10^{-5} \mathrm{~m}$
  • D $16 \times 10^{-4} \mathrm{~m}$
Solution:
1642 Upvotes Verified Answer
The correct answer is: $8 \times 10^{-5} \mathrm{~m}$
Given, length of the wire,
$$
\begin{aligned}
l & =50 \mathrm{~cm} \\
& =5 \times 10^{-2} \mathrm{~m}
\end{aligned}
$$

Cross-sectional area of wire,
$$
\begin{aligned}
A & =1 \mathrm{~mm}^2 \\
& =1 \times 10^{-6} \mathrm{~m}^2
\end{aligned}
$$
and mass of the wire, $m=5 \mathrm{~g}$
Speed of transverse wave, $v=80 \mathrm{~m} / \mathrm{s}$
Now, speed of transverse wave given as
$$
\begin{array}{rlrl}
& \therefore & v & =\sqrt{\frac{T}{\mu}}=\sqrt{\frac{T}{m} \times l} \\
\Rightarrow & v & =\sqrt{\frac{T}{m} \times l}
\end{array}
$$
$\Rightarrow \quad v^2=\frac{T}{m} \times l$


Now, Young's modulus, $Y=\frac{\frac{T}{A}}{\frac{\Delta l}{l}}$

From Eqs. (i) and (ii), we get
$$
\therefore \quad \Delta l=\frac{v^2 m}{A Y}
$$

Putting the given values, we get
$$
\begin{gathered}
\Delta l=\frac{80^2 \times 5 \times 10^{-3}}{1 \times 10^{-6} \times 4 \times 10^{11}} \mathrm{~m} \\
\Delta l=8 \times 10^{-5} \mathrm{~m}
\end{gathered}
$$
or
So, the extension in the length of the wire is $\Delta l=8 \times 10^{-5} \mathrm{~m}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.