Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The sum of solutions of the equation cosx1+sinx=tan2x, x-π2,π2--π4,π4 is:
MathematicsTrigonometric EquationsJEE MainJEE Main 2021 (26 Aug Shift 1)
Options:
  • A π10
  • B -7π30
  • C -π15
  • D -11π30
Solution:
2805 Upvotes Verified Answer
The correct answer is: -11π30

We have,

cosx1+sinx=tan2x

where, x-π2,π2-π4,-π4

Case-1: When 0x<π4 & -π2<x<-π4.

cosx1+sinx=tan2x

cosx1+sinx=sin2xcos2x

cosx1+sinx=2sinxcosxcos2x-sin2x

cosxcos2x-sin2x=2sinxcosx1+sinx

cosx1-2sin2x=cosx2sinx+2sin2x

cosx-4sin2x-2sinx+1=0

cosx4sin2x+2sinx-1=0

Then,

cosx=0 (Not possible, since 0x<π4 & -π2<x<-π4)

And,

sinx=-2±258=-1±54

x=π10,-3π10

Case-2: When π4<x<π2 and -π4<x<0, then

cosx1+sinx=-tan2x

cosx1+sinx=-sin2xcos2x

cosx1+sinx=-2sinxcosxcos2x-sin2x

cosxcos2x-sin2x=-2sinxcosx1+sinx

cosx1-2sin2x=cosx-2sinx-2sin2x

cosx(1+2sinx)=0

cosx=0xϕ

And, sinx=-12x=-π6

Sum of solutions

=π10-3π10-π6=-11π30

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.