Search any question & find its solution
Question:
Answered & Verified by Expert
The sum of the series $\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4} \ldots \ldots \ldots \ldots \ldots \ldots .$. up to $\infty$ is equal to
Options:
Solution:
1434 Upvotes
Verified Answer
The correct answer is:
$\log _e\left(\frac{4}{e}\right)$
$\log _e\left(\frac{4}{e}\right)$
$\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\infty$
Let $T_n=\frac{1}{n(n+1)}=\left(\frac{1}{n}-\frac{1}{n+1}\right)$
$\mathrm{S}=\mathrm{T}_1-\mathrm{T}_2+\mathrm{T}_3-\mathrm{T}_4+\mathrm{T}_5 \ldots \ldots \ldots \ldots \ldots$
$=\left(\frac{1}{1}-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)-\left(\frac{1}{4}-\frac{1}{5}\right) \ldots \ldots \ldots$.
$=1-2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5} \ldots \ldots \ldots \ldots \infty\right]$
$=1-2[-\log (1+1)+1]=2 \log 2-1=\log \left(\frac{4}{e}\right)$
Let $T_n=\frac{1}{n(n+1)}=\left(\frac{1}{n}-\frac{1}{n+1}\right)$
$\mathrm{S}=\mathrm{T}_1-\mathrm{T}_2+\mathrm{T}_3-\mathrm{T}_4+\mathrm{T}_5 \ldots \ldots \ldots \ldots \ldots$
$=\left(\frac{1}{1}-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)-\left(\frac{1}{4}-\frac{1}{5}\right) \ldots \ldots \ldots$.
$=1-2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5} \ldots \ldots \ldots \ldots \infty\right]$
$=1-2[-\log (1+1)+1]=2 \log 2-1=\log \left(\frac{4}{e}\right)$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.